The DNA polymerase gamma Y955C disease variant associated with PEO and parkinsonism mediates the incorporation and translesion synthesis opposite 7,8-dihydro-8-oxo-2'-deoxyguanosine.
نویسندگان
چکیده
Mitochondrial DNA is replicated and repaired by DNA polymerase gamma (pol gamma), encoded by the POLG gene. The Y955C substitution in POLG leads to autosomal dominant progressive external ophthalmoplegia (PEO) with other severe phenotypes. PEO patients with this mutation can further develop parkinsonism or premature ovarian failure. Mouse and yeast models with this mutation show enhanced amounts of oxidative lesions and increased mtDNA damage. In DNA pol gamma, Tyr955 plays a critical role in catalysis and high fidelity DNA synthesis. 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG) is one of the most common oxidative lesions in DNA and can promote transversion mutations. Mitochondria are thought to be a major source of endogenous reactive oxygen species that can react with dG to form 8-oxo-dG as one of the more common products. DNA polymerases can mitigate mutagenesis by 8-oxo-dG through allosteric interactions from amino acid side chains, which limit the anti-conformation of the 8-oxo-dG template base during translesion DNA synthesis. Here, we show that the Y955C pol gamma displays relaxed discrimination when either incorporating 8-oxo-dGTP or translesion synthesis opposite 8-oxo-dG. Molecular modeling and biochemical analysis suggest that this residue, Tyr955, in conjunction with Phe961 helps attenuate the anti-conformation in human pol gamma for error free bypass of 8-oxo-dG and substitution to Cys allows the mutagenic syn conformation. Collectively, these results offer a biochemical link between the observed oxidative stress in model systems and parkinsonism in patients, suggesting that patients harboring the Y955C POLG mutation may undergo enhanced oxidative stress and DNA mutagenesis.
منابع مشابه
The effect of the 2-amino group of 7,8-dihydro-8-oxo-2′-deoxyguanosine on translesion synthesis and duplex stability
Replication of DNA containing 7,8-dihydro-8-oxo-2'-deoxyguanosine (OxodG) gives rise to G --> T transversions. The syn-isomer of the lesion directs misincorporation of 2'-deoxyadenosine (dA) opposite it. We investigated the role of the 2-amino substituent on duplex thermal stability and in replication using 7,8-dihydro-8-oxo-2'-deoxyinosine (OxodI). Oligonucleotides containing OxodI at defined ...
متن کاملA highly conserved Tyrosine residue of family B DNA polymerases contributes to dictate translesion synthesis past 8-oxo-7,8-dihydro-2′-deoxyguanosine
The harmfulness of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8oxodG) damage resides on its dual coding potential, as it can pair with the correct dCMP (dC) or the incorrect dAMP (dA). Here, we investigate the translesional synthesis ability of family B 29 DNA polymerase on 8oxodG-containing templates. We show that this polymerase preferentially inserts dC opposite 8oxodG, its 3'-5' exonuclease activ...
متن کاملRibonucleotide incorporation by human DNA polymerase η impacts translesion synthesis and RNase H2 activity
Ribonucleotides (rNs) incorporated in the genome by DNA polymerases (Pols) are removed by RNase H2. Cytidine and guanosine preferentially accumulate over the other rNs. Here we show that human Pol η can incorporate cytidine monophosphate (rCMP) opposite guanine, 8-oxo-7,8-dihydroguanine, 8-methyl-2΄-deoxyguanosine and a cisplatin intrastrand guanine crosslink (cis-PtGG), while it cannot bypass ...
متن کاملImpact of ribonucleotide incorporation by DNA polymerases β and λ on oxidative base excision repair
Oxidative stress is a very frequent source of DNA damage. Many cellular DNA polymerases (Pols) can incorporate ribonucleotides (rNMPs) during DNA synthesis. However, whether oxidative stress-triggered DNA repair synthesis contributes to genomic rNMPs incorporation is so far not fully understood. Human specialized Pols β and λ are the important enzymes involved in the oxidative stress tolerance,...
متن کاملMutagenic Potential of 8-Oxo-7,8-dihydro-2′-deoxyguanosine Bypass Catalyzed by Human Y-Family DNA Polymerases
One of the most common lesions induced by oxidative DNA damage is 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG). Replicative DNA polymerases poorly traverse this highly mutagenic lesion, suggesting that the replication fork may switch to a polymerase specialized for translesion DNA synthesis (TLS) to catalyze 8-oxodG bypass in vivo. Here, we systematically compared the 8-oxodG bypass efficienci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 16 22 شماره
صفحات -
تاریخ انتشار 2007